

Copper-Catalyzed Stereodefined Construction of Acrylic Acid Derivatives from Terminal Alkynes via CO₂ Insertion

Kenta Kuge, Ying Luo, Yuki Fujita, Yasuyuki Mori, Gen Onodera, and Masanari Kimura*

Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Supporting Information

ABSTRACT: IPrCuCl catalyzes the CO₂ insertion reaction undergone by a dialkylvinylborane intermediate derived from alkynyltrialkylborate by a 1,2-alkyl group migration to afford α -alkyl acrylic acids with excellent regio- and stereoselectivities.

O₂ fixation is among the most straightforward synthetic methodologies for the construction of carboxylic acids.¹ Specifically, Cu- and Ni-catalyzed multicomponent coupling reactions with alkynes, organoaluminum, or organozinc regents under a CO_2 atmosphere that provide β -substituted acrylic acids are promising strategies for efficient modern organic synthesis.² CO₂ insertion into the unsaturation in enynes,³ dienes, allenes, and allylating substrates is utilized for the convenient and selective formation of unsaturated carboxylic acids. Notably, among direct C-C bond transformations, significant attention has been paid to the activation of sp² carbon atoms via transition-metal-catalyzed C-H activation and the incorporation of CO2 to form aromatic carboxylic acids⁷ and unsaturated carboxylic acids in recent years.⁸

Alkenyl organoboranes are important and useful key intermediates in organic synthesis, especially cross-coupling reactions. In general, alkenyl organoboranes are prepared from hydroborations of alkynes with organoboranes and bis-(pinacolate)diborane. 10' Although some examples of the formation of alkenyl organoboranes via alkynyl ate comlexes have been reported so far, 11 synthetic utilities of alkynylborates have so far been limited. 12

From this point of view, we previously developed a Pdcatalyzed regio- and stereoselective three-component coupling reaction of a terminal alkyne, a trialkylborane, and allylic alcohols to provide trisubstituted alkenes involving alkynyl ate complexes (Scheme 1).¹³ In this case, the terminal alkyne

Scheme 1. Pd-Catalyzed Stereoselective Allylation of Terminal Alkyne To Form 1,4-Pentadiene

reacted with the trialkylborane to give the alkynyltrialkylborate, which was followed by the 1,2-alkyl migration process; then the transmetalation of alkenylborane with π -allylpalladium species provided the stereodefined trisubstituted alkenes. Furthermore, similar multicomponent coupling reactions involving conjugated dienes with terminal alkynes in the presence of a Pd catalyst and Et₃N as a base could be applicable for the tandem dimerization of conjugated dienes to form 1,4,9-decatrienes.¹⁴

Based on the results of these multicomponent coupling reactions, we envisaged the use of CO2 as an electrophilic reagent instead of π -allylpalladium in the presence of trialkylboranes and transition-metal catalysts. We could thus succeed in the three-component coupling reaction of an alkyne, a trialkylborane, and CO_2 to yield α -substituted acrylic acids as a single product. In contrast to the previously reported results of Ni- and Cu-catalyzed coupling reactions with terminal alkynes and organometalloids such as organoaluminum and organozinc reagents with CO₂ (Scheme 2), the present

Scheme 2. CO₂ Insertion into Terminal Alkyne Using Organozinc and Organoaluminum

coupling reaction offers regioselectivity. Herein, we discuss the scope and limitations of Cu-catalyzed highly regio- and stereoselective formations of α -substituted acrylic acids by coupling reactions of terminal alkynes and trialkylboranes under CO₂ at atmospheric pressure through the 1,2-alkyl migration of alkynyltrialkylborate as a key intermediate (Scheme 3).

The reaction was carried out in the presence of 0.05 mmol of a CuCl catalyst with various carbene ligands, 2.0 mmol of base,

Scheme 3. Cu-Catalyzed CO₂ Insertion into Terminal Alkyne Using Organoboranes

Received: December 27, 2016 Published: February 8, 2017

Organic Letters Letter

and 1.0 mmol of Et_3B at room temperature under CO_2 atmosphere for 24 h. The crude mixture was subjected to silica gel column chromatography to obtain the corresponding acrylic acid as a single product. The results summarized in Table 1 indicate that the choice of base dramatically affected

Table 1. Cu-Catalyzed CO₂ Insertion into Phenylacetylene^a

entry	catalyst	base	solvent	yield (%)
1	IPrCuCl	t-BuOK	dioxane	38 (E only)
2	IPrCuCl	t-BuONa	dioxane	NR
3	IPrCuCl	t-BuOLi	dioxane	NR
4	IPrCuCl	EtOK	dioxane	50 (E only)
5	IPrCuCl	MeOK	dioxane	61 (E only)
6^{b}	IPrCuCl	MeOK	dioxane	78 (E only)
7^b	IPrCuCl	MeOK	THF	61 (E only)
8^{b}	IPrCuCl	MeOK	DMA	NR
9 ^b	IPrCuCl	MeOK	toluene	57 (E only)
10 ^b	IPrCuCl	MeOK	hexane	66 (E only)
11 ^b	^{Cl} IPrCuCl	MeOK	dioxane	70 (E only)
12 ^b	MeIPrCuCl	MeOK	dioxane	73 (E only)
13 ^b	IPr*CuCl	MeOK	dioxane	trace
14 ^b	IMesCuCl	MeOK	dioxane	NR
_				

"Entries 1–5: phenylacetylene (0.5 mmol), base (2.0 mmol), and $\rm Et_3B$ (1.0 mmol) in the presence of CuCl catalyst (0.05 mmol) in dioxane (3 mL) at rt for 24 h under $\rm CO_2$ (1 atm). "Entries 6–14: phenylacetylene (0.5 mmol), base (2.0 mmol), and $\rm Et_3B$ (3.0 mmol) in the presence of CuCl catalyst (0.05 mmol) in solvent (3 mL) at rt for 24 h under $\rm CO_2$ (1 atm).

the product yields. t-BuOK provided the desired product 1a in 38% yield (entry 1, Table 1). In contrast, similar sodium and lithium tert-butoxide bases were ineffective for the coupling reactions, and the expected product was not obtained at all (entries 2 and 3, Table 1). Low product yields were observed according to the low conversion of terminal alkynes, and (Z)-1phenyl-1-butene was generated as a byproduct. The use of EtOK as a base provided the desired product in 50% yield (entry 4). Further inspection of the bases revealed that MeOK was the most efficient base for the three-component coupling reactions. In particular, in the presence of 3.0 mmol of Et₃B and 2.0 mmol of MeOK, the reaction mixture resulted in the formation of product 1a in the highest yield in 1,4-dioxane. Diminishing the amount of base was ineffective, and other solvents such as THF, DMA, toluene, and hexane were not beneficial (entries 7-10, Table 1). Although various kinds of carbene ligands besides IPr were investigated, such as ^{Cl}IPr, MeIPr, IPr*, and IMes (entries 11-14, Table 1), the reaction with a combination of the IPr ligand and MeOK in dioxane provided the best results. Product 1a was obtained as a single isomer with almost complete regio- and stereoselectivities. 1

Next, we investigated the reactions of various kinds of terminal alkynes and organoboranes (Table 2). Irrespective of the kinds of substituents on the aromatic terminal alkynes, a similar coupling reaction proceeded in moderate to good yields under optimized conditions, as elucidated in Table 1. p-Methoxy- and o-methoxyphenyl-substituted alkynes resulted in the formation of α -ethyl- β -aryl acrylic acids 1b and 1c as a single isomer in moderate to good yields, and the CO_2 insertion

Table 2. Cu-Catalyzed CO₂ Insertion into Terminal Acetylene^a

entry	alkyne R	R'_3B	yield of 1 (%)
1	Ph	Et ₃ B	1a (78)
2	p-OMePh	Et ₃ B	1b (62)
3	o-OMePh	Et ₃ B	1c (73)
4	p-C ₅ H ₁₁ Ph	Et ₃ B	1d (56)
5	p-ClPh	Et ₃ B	1e (68)
6	o-ClPh	Et ₃ B	1f (59)
7	2,4,5-MePh	Et ₃ B	1g (83)
8	2-thiophene-yl	Et ₃ B	1h (53)
9	CH ₂ OBn	Et ₃ B	1i (24)
10	Ph	n-Bu ₃ B	1j (43)
11	Ph	$(t-BuC_2H_4)_3B$	1k (23)

^aConditions: alkyne (0.5 mmol), MeOK (2.0 mmol), and organoborane (3.0 mmol) in the presence of IPrCuCl (0.05 mmol) in 1,4-dioxane (3 mL) at rt for 24 h under CO₂ (1 atm).

reaction proceeded with high *E*-stereoselectivity (entries 2 and 3, Table 2). Halogenated aromatic compounds could participate in the reaction to form the desired products 1e and 1f as (*E*)-isomers (entry 5 and 6, Table 2). Although heteroaromatic substitutents took part in the coupling reactions as well as phenyl groups, alkylated substitutents were not suitable for the reactions. ¹⁶

As in the case of tri-n-butylborane, a similar coupling reaction proceeded to form product 1j as a single isomer as well as triethylborane (entry 10, Table 2). Tris(3,3-dimethylbutyl)-borane, which was prepared via the hydroboration of 3,3-dimethyl-1-butene, could take part in the coupling reaction to afford the desired product 1k (entry 11, Table 2). Therefore, the three-component coupling reaction with terminal alkynes under CO_2 could be achieved not only with commercially available trialkylboranes but also with organoboranes prepared from hydroboration of alkenes for the synthesis of stereo-defined $\alpha_n\beta$ -substituted acrylic acid derivatives. 17

To investigate the mechanistic aspects of the catalytic process, a deuterium-labeling experiment was performed. 1-Deuteriophenylacetylene (95% D) underwent the coupling reaction via treatment with MeOK and Et_3B in the presence of IPrCuCl as the catalyst in 1,4-dioxane under CO_2 atmosphere (Scheme 4). The product incorporated a deuterium atom at the

Scheme 4. Deuterium-Labeling Experiment for Cu-Catalyzed ${\rm CO_2}$ Insertion of Phenylacetylene-d

vinylic position, affording (75% D) in a reasonable yield. Although the reason for the incomplete incorporation of deuterium is currently unclear, this result suggests that the origin of the proton source at the vinylic position might be attributed to the acetylenic terminal proton atom, giving rise to the trisubstituted alkenes with high regio- and stereoselectivities. ¹⁸

Organic Letters Letter

Although it is premature to speculate on the reaction mechanism based on the deuterium-labeling experiment, a plausible reaction mechanism with terminal alkyne, Et₃B, and CO₂ might be proposed, as illustrated in Scheme 5. At first, the

Scheme 5. Plausible Reaction Mechanism for Cu-Catalyzed CO₂ Insertion into Terminal Alkynes

acetylide was generated from the abstraction of the terminal proton of alkyne by MeOK as a base to react with Et_3B , thus providing alkynyltriethylborate. This alkynyltriethylborate ate complex then underwent protonation at the β -carbon position to yield a vinylic cation intermediate, which then experienced [1,2] an ethyl group migration reaction to the empty p orbital of the vinylic carbocation with excellent stereoselectivity to form the vinyldiethylborane intermediate. Then, transmetalation with a carbene—copper species affords a vinylcopper intermediate. The nucleophilic addition of vinylcopper to CO_2 might have yielded a carboxylate salt, which then reacted with MeOK to regenerate the carbene—copper species.

In summary, a Cu-catalyzed CO_2 insertion reaction involving a dialkylvinylborane intermediate derived from alkynyltrialkylborate by a 1,2-alkyl group migration was carried out to afford α -alkylated acrylic acids with excellent regio- and stereoselectivities. This CO_2 insertion is in contrast to the previously developed methods utilizing Cu- and Ni-catalyzed multicomponent coupling, which prepared α -substituted acrylic acids from the terminal alkynes.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b03860.

Experimental procedures, characterization data, NMR spectra, an dX-ray data for 1a (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: masanari@nagasaki-u.ac.jp.

ORCID ®

Masanari Kimura: 0000-0003-2900-9554

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from a Grant-in-Aid for Scientific Research (B) (26288052) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.

REFERENCES

- (1) (a) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. (b) Tlili, A.; Blondiaux, E.; Frogneux, X.; Cantat, T. Green Chem. 2015, 17, 157–168. (c) Periana, R. A.; Mironov, O.; Taube, D.; Bhalla, G.; Jones, C. J. Science 2003, 301, 814–818.
- (2) (a) Schreiner, E.; Wilcke, T.; Müller, T. J. J. Synlett **2016**, 27, 379–382. (b) Takimoto, M.; Gholap, S.; Hou, Z. Chem. Eur. J. **2015**, 21, 15218–15223. (c) Takimoto, M.; Hou, Z. Chem. Eur. J. **2013**, 19, 11439–11445. (d) Shimizu, K.; Takimoto, M.; Mori, M. Org. Lett. **2003**, 5, 2323–2325. (e) Takimoto, M.; Shimizu, K.; Mori, M. Org. Lett. **2001**, 3, 3345–3347.
- (3) (a) Mori, Y.; Kawabata, T.; Onodera, G.; Kimura, M. Synthesis **2016**, 48, 2385–2395. (b) Kimura, M.; Ohira, Y.; Mori, T.; Hayashi, M.; Onodera, G. Heterocycles **2015**, 90, 832–841. (c) Mori, Y.; Onodera, G.; Kimura, M. Chem. Lett. **2014**, 43, 97–99.
- (4) (a) Mori, Y.; Mori, T.; Onodera, G.; Kimura, M. Synthesis 2014, 46, 2287–2292. (b) Takimoto, M.; Mizuno, T.; Mori, M.; Sato, Y. Tetrahedron 2006, 62, 7589–7597. (c) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956–5957. (d) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008–10009. (e) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2001, 123, 2895–2896.
- (5) (a) Gholap, S. S.; Takimoto, M.; Hou, Z. Chem. Eur. J. 2016, 22, 8547–8552. (b) Takimoto, M.; Kawamura, M.; Mori, M.; Sato, Y. Synlett 2011, 2011, 1423–1426. (c) Takimoto, M.; Kawamura, M.; Mori, M. Synthesis 2004, 2004, 791–785. (d) Takimoto, M.; Kawamura, M.; Mori, M. Org. Lett. 2003, 5, 2599–2601.
- (6) (a) Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391–16394. (b) Duong, H. A.; Huleatt, P. B.; Tan, Q.-W.; Shuying, E. L. Org. Lett. 2013, 15, 4034–4037.
- (7) For CO₂ insertion at the arene and sp² carbon, see: (a) Ueno, A.; Takimoto, M.; O, W. W. N.; Nishiura, M.; Ikariya, T.; Hou, Z. Chem. Asian J. 2015, 10, 1010–1016. (b) Mita, T.; Suga, K.; Sato, K.; Sato, Y. Org. Lett. 2015, 17, 5276–5279. (c) Riss, P. J.; Lu, S.; Telu, S.; Aigbirhio, F. I.; Pike, V. W. Angew. Chem., Int. Ed. 2012, 51, 2698–2702. (d) Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974–15975. (e) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 5792–5795.
- (8) For CO₂ insertion at the sp³ carbon, see: (a) Mita, T.; Saito, K.; Sugawara, M.; Sato, Y. *Chem. Asian J.* **2016**, *11*, 1528–1531. (b) Grigg, R. D.; Rigoli, J. W.; Van Hoveln, R.; Neale, S.; Schomaker, J. M. *Chem. Eur. J.* **2012**, *18*, 9391–9396. (c) Ohishi, T.; Zhang, L.; Nishiura, M.; Hou, Z. *Angew. Chem., Int. Ed.* **2011**, *50*, 8114–8117.
- (9) (a) Hall, D. G. Boronic Acids; Wiley-VCH: Weinheim, 2005.
 (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168. (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
- (10) (a) Yoshida, H. ACS Catal. 2016, 6, 1799—1811. (b) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Tetrahedron 2015, 71, 2183—2197. (c) Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Catal. Sci. Technol. 2014, 4, 1699—1709. (d) Barbeyron, R.; Benedetti, E.; Cossy, J.; Vasseur, J.-J.; Arseniyadis, S.; Smietana, M. Tetrahedron 2014, 70, 8431—8452. (e) Trost, B. M.; Ball, Z. T. Synthesis 2005, 2005, 853—887. (f) Negishi, E.; Yoshida, T.; Abramovitch, A.; Lew, G.; Williams, R. M. Tetrahedron 1991, 47, 343—356. (g) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96—99.
- (11) For a review of the advanced Wrackmeyer reaction, see: (a) Kehr, G.; Erker, G. Chem. Sci. 2016, 7, 56–65. 1,1-Carboboration of alkynylborates: (b) Suzuki, A.; Miyaura, N.; Abiko, S.; Itoh, M.; Midland, M. M.; Sinclair, J. A.; Brown, H. C. J. Org. Chem. 1986, 51, 4507–4511. (c) Brown, H. C.; Molander, G. A. J. Org. Chem. 1986, 51, 4512–4514. (d) Brown, H. C.; Wang, K. K. J. Org. Chem. 1986, 51, 4514–4517. (e) Brown, H. C.; Basavaiah, D.; Bhat, N. G. J. Org. Chem. 1986, 51, 4518–4521. (f) Sikorski, J. A.; Bhat, N. G.; Cole, T. E.; Wang, K. K.; Brown, H. C. J. Org. Chem. 1986, 51, 4521–4525.
- (12) (a) Morimoto, M.; Miura, T.; Murakami, M. Angew. Chem., Int. Ed. 2015, 54, 12659–12663. (b) Ishida, N.; Narumi, M.; Murakami, M. Org. Lett. 2008, 10, 1279–1281. (c) Ishida, N.; Miura, T.; Murakami, M. Chem. Commun. 2007, 42, 4381–4383.

Organic Letters Letter

(13) Fukushima, M.; Takushima, D.; Satomura, H.; Onodera, G.; Kimura, M. Chem. - Eur. J. 2012, 18, 8019–8023.

- (14) Kimura, M.; Takushima, D.; Fukushima, M.; Satomura, H.; Onodera, G. *Heterocycles* **2012**, *86*, 171–180.
- (15) CCDC 1517933 contains the supplementary crystallographic data for 1a. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
- (16) Under similar conditions, 1-octyne could not provide the desired products at all, irrespective of the kinds of bases. Although it is premature to rationalize the reason nonarylated terminal alkynes could not participate in the expected reactions, the exquisite balance of the acidity of alkynes and the basicity of bases seems to be most effective for the protonation process and regeneration of Cu active species.
- (17) *n*-Octyl-9-BBN and Ph-9-BBN could not work as alkylating and arylating agents, respectively. The present reaction is limited to the use of trialkylboranes.
- (18) It has been reported the protonation of lithium or sodium alkynyltrialkylborates provided the E/Z mixture of alkenylboranes; see: (a) Miyaura, N.; Yoshinari, T.; Itoh, M.; Suzuki, A. *Tetrahedron Lett.* **1974**, *15*, 2961–2964. (b) Binger, P.; Köster, R. *Tetrahedron Lett.* **1965**, *6*, 1901–1906. In the present case, the products were obtained with excellent stereoselectivity. This highly selective process might be attributed to Cu-catalyzed stereocontrolled protonation with methanol.
- (19) Cu catalyst might act as a promoter for the formation of alkynyltrialkylborates from terminal alkynes and trialkylboranes; IPrCuCl seems to serve as a Lewis acid to enhance the acidity of terminal alkynes via the π -alkyne complex. A similar assumption of the Cu-catalyzed enhancement of the acidity of terminal alkyne has been reported; see: Gooßen, L. J.; Rodriguez, N.; Manjolinho, F.; Lange, P. P. Adv. Synth. Catal. **2010**, 352, 2913–2917.